
Dynamic Simulations of Autoregressive Relationships

Abstract: This post-estimation technique produces dynamic simulations of autoregressive OLS models.
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1 Overview

Social scientists have recently put increased emphasis on exploring the wide range of substantive inferences
from their statistical models. One area where this new focus has been especially useful is analyses of ordinary
least squares models with autoregressive processes. By specifying models with a lagged dependent variable,
scholars implicitly assume that the full effects of an independent variable occur for more than just one time
period. For example, de Boef and Keele (2008) show that, in models with autoregressive processes the βs
only provide the short-term effect of that variable in that period. Since the value of the dependent variable
depends on its previous values, each independent variable also has a long-term effect. In an OLS model with

a lagged dependent variable (and no lagged exogenous variables), the long-term effect of X1 is β̂

1−ϕ̂
, where

β̂ is the parameter estimate for the independent variable of interest (X1) and ϕ̂ is the parameter estimate
for the lagged dependent variable. A full exploration of the substantive effects thus requires providing the
long-term effects, in addition to other quantities of interest such as median and mean lag lengths (de Boef
and Keele 2008).

This is consistent with the call made by King, Tomz and Wittenberg (2000) to provide quantities of
interest that are substantively meaningful, easy to comprehend, and that are accompanied by measures of
uncertainty. Certainly, quantities of interest (i.e., predicted values, first differences, etc) and their measures
of uncertainty (i.e., standard errors, confidence intervals, etc) can be calculated via analytical methods.
King, Tomz and Wittenberg (2000) suggest that the advances in computing power have ushered in an era
for virtually all computers to engage in simulation-based techniques that were previously possible only for
supercomputers. A much more in-depth discussion is provided in King, Tomz and Wittenberg (2000), so we
will only briefly describe simulation methods and their usefulness for our purposes.

Consider a very broad class of statistical models that can be summarized via two equations:

Yi ∼ f(θi, α), θi = g(Xi, β).

The first equation describes the stochastic component of the statistical model, or “the probability density (or
mass) function that generates the dependent variable Yi(i = 1, . . . , n) as a random draw from the probability
density f(θi, α)” (King, Tomz and Wittenberg 2000: 348). The characteristics that vary across observation,
i, are contained in the parameter vector θi, while those that do not vary are in the ancillary parameter
matrix α. The second equation is the systematic component, where θi varies according to the values of the
independent variables (Xi). The functional form g(., .) “specifies how the explanatory variables and effect
parameters get translated into θi” (King, Tomz and Wittenberg 2000: 348). In the case of ordinary least
squares regression with normally distributed, homoskedastic errors (σ2), we have:

Yi ∼ N(µi, σ
2), µi = Xiβ

where the systematic component (Xiβ) is of the linear form Xiβ = β0+Xi1β1+Xi2β2+. . . . After estimating
the model, many researchers stop once they interpret the coefficients and perhaps their standard errors.
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However, there are a number of other quantities as well as measures of uncertainty that can aid the substantive
interpretation of the causal relationships. Some of these measures of uncertainty are incomplete because they
ignore both estimation uncertainty (which comes from estimating the α and βs) and fundamental uncertainty
(which comes from having a stochastic component).

King, Tomz and Wittenberg (2000) advocate statistical simulation as a means of overcoming these prob-
lems, and improving statistical inference. Much like survey sampling can tell us something about the pop-
ulation as a whole, the central limit theorem allows us to make inferences about probability distributions
by simulating (drawing random numbers) from the distribution. In the case of OLS, one can use point
estimates and the variance-covariance matrix returned after estimation of a regression to randomly draw
(simulate) the parameters from a multivariate normal distribution with mean equal to the parameters and
variance equal to the variance-covariance matrix. For example, one can make n draws from the multivariate
normal distribution, calculate the predicted value as the mean of those values, and calculate lower and upper
confidence bounds using the resulting rank statistics.

King, Tomz and Wittenberg’s (2000) Clarify program contains three separate Stata commands that
made it easy for scholars to generate meaningful quantities of interest following a number of estimation
procedures.1 First, estsimp generates n draws of the point estimates and ancillary parameters (in the OLS
case, σ2). Next, the user can specify the values of the independent variables (XC) according to wide variety
of numbering conventions with setx. Finally, simqi generates a wide variety of quantities of interest for
that scenario, including predicted values, first differences, etc.

We believe that scholars are neglecting some of the most meaningful substantive inferences from autore-
gressive models. More specifically, in autoregressive models the most effective way of observing the long-term
effects of exogenous variables is through simulating the predicted value (and confidence interval) for a given
scenario over a given number of time periods. The dynsim command makes use of the Clarify package to
create j long-term dynamic simulations of up to four user-specified scenarios for OLS models with a lagged
dependent variable. It is dynamic in the sense that each additional iteration uses the predicted value from
the previous iteration as the value of the lagged dependent variable in the next scenario. These simulations
are then saved to a new data set that can be presented graphically or in a tabular fashion. The forecast

option calculates analytical standard errors that incorporate forecasting error into the dynamic simulations
so that the confidence intervals are not underestimated. Greene (2003) demonstrates that the conditional
forecasting error variance is:

var[ŷT+F |T ] = σ2[1 + Ψ(1)11 +Ψ(2)11 + · · ·+Ψ(F − 1)11]

where Ψ(i) = Cijj′Ci′.

When we have a single lagged dependent variable (i.e., i = 1), Ψ(i) = Cijj′Ci′ collapses to Ψ(i) = γ2σ2∀i
making the conditional forecast error variance

var[ŷT+F |T ] = σ2[1 +
∑
F

σ2γ2].

Available options include specifying the values of an exogenous variable to change with each iteration.
This exogenous variable, called the shock variable, is included by either specifying an additional data set
containing the shock variable, or via a Stata number list. The program also effectively deals with interacting
the shock variable with up to four other independent variables in the model.

The dynsim command automates a set of code to produce dynamic simulations. As a simple illustration
of generating predicted values and 95% confidence intervals for a scenario where all the independent variables
are held at their means for 10 iterations, we present the following code:

.webuse grunfeld, clear

.gen lag_invest = L.invest

1Our brief summary of simulation methods in general and the Clarify program in particular are modified to fit the purposes
of the this command. We strongly encourage interested readers to explore these methods with the original sources.

2



.estsimp regress invest lag_invest mvalue kstock

.local it = 10 /* 10 iterations */

.local ldv_value = 139.2 /* Starting value for LDV */

.foreach i of numlist 1(1)‘it’ {

. setx lag_invest ‘ldv_value’

. quietly simqi, genpv(yhat_‘i’) pv

. quietly sum yhat_‘i’, meanonly

. local yhat = ‘r(mean)’

. _pctile yhat_‘i’, percentiles(2.5 97.5) /* 95% CI */

. display as result "Iteration = " ‘i’

. display as result "Predicted Value = " ‘yhat’ " 95% C.I. = [" ‘r(r1)’ ", " ‘r(r2)’ "]"

. local ldv_value = ‘yhat’

.}

2 Syntax

dynsim varlist , ldv(varname) scen1(string) [scen2(string) scen3(string) scen4(string) n(integer) sig(cilevel)
shock(varname) shock_data(filename) shock_num(numlist) saving(string) modify(varlist) inter(varlist)
forecast(string)]

3 Options

ldv(varname) specifies the name of the lagged dependent variable.

scen1(string) specifies the values of the variables used to generate the predicted values when t = 0. At
least one scenario must be given. The coding designation is identical to the options used in Clarify’s setx
(with the exception of setting the values to a specific observation). At each subsequent iteration, these
values will stay the same, except for the value of the lagged dependent variable, the shock variable (shock,
if specified) and the interacted variable (inter, if specified).

scen2-4(string) are optional and are only used if more than one scenario is desired. A maximum of 4
scenarios is allowed. It follows the same conventions as scen1.

n(integer) specifies the number of iterations (or time period) over which the program will generate the
predicted value of the dependent variable. The default is 10.

sig(cilevel) specifies the level of statistical significance of the confidence intervals (calculated via the per-
centile method). This value must be between 10 and 99.99.

shock(varname) this option allows the user to choose an independent variable (and its first n values) and
have the variable (and potentially different values) impact the scenarios at each simulation. If this com-
mand is specified, the user must specify the n shock values through either a data set containing the variable
(shock_data) or a Stata numlist (shock_num). The number of values assigned to the shock variable must
exceed the number of simulations. If the shock variable is interacted with another variable in the model, the
user must also specify the name of the modifying variable (modify) and the interaction variable (inter).

shock_data(string) is one of two ways of specifying the shock values. This must give the file name, or
must be located in the working directory. The data set used to get the shock variable (called the shock data
set), must have at least the number of iterations specified in n and it must contain a variable with the same
name as the shock variable (shock).
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shock_num(numlist) is the second way of specifying the shock values. Any numlist is acceptable, as long as
it contains at least n values.

modify(varlist) is the name of up to four variables that modify the relationship between the shock vari-
able and the dependent variable. If the shock variable is interacted with another variable in the model,
dynsim automatically updates the value of the interaction to be the product of the shock and modify vari-
able at each interaction. If the inter is specified, this must also be specified. The same number of variables
must appear in the inter as modify. The variables must also appear in the same order as in estsimp.

inter(varlist) is the name of up to four interaction variables. If modify is specified, this must also be
specified. It also must be in the same order as estsimp.

saving(string) is the name of the new data set created that contains the predicted values and confidence
intervals for each scenario. It automatically replaces any data set with the same name, so change the name
of the saving data set if you do not want it replaced.

forecast(string) produces confidence intervals based on one of four options for calculating the conditional
variance of a forecast: the ae calculates the standard errors analytically based on Enders’ (2004: 79-81)
formula for the conditional variance of the forecast. Choosing ag calculates the standard errors analytically
based on Greene’s (2003: 571-580) formula for the conditional variance of a forecast. The se and sg options
use the Enders and Greene formulas, respectively, but use the simulations to produce n estimates of the
conditional variance, which are then used to produce confidence intervals based on the percentile method.

4 Examples

To illustrate the features of dynsim, we use the Grunfeld (1958) data set (webuse grunfeld) to estimate
the following model via ordinary least squares regression:

Iit = α+ β1Iit−1 + β2Fit + β3Cit + µit

where Iit denotes real gross investment for firm i in year t, Iit−1 is the firm’s investment for the previous
year, Fit is the real value of the firm, and Cit is the real value of the capital stock. The data set contains
information for 10 large US manufacturing firms from 1935-1954 (Baltagi 2001).

Consider an OLS model that predicts a firm’s real gross investment (invest) with its one-year lag
(lag_invest), the firm’s market value (mvalue), and the real value of the capital stock (kstock). We would
first decide how many scenarios we wanted to display for our dynamic simulations and the values of each
one of the variables in those scenarios. Suppose that we want three different scenarios based on holding
the firm’s market value and value of the capital stock at its 5th percentile, mean, and 95th percentile,
respectively. We also provide the starting value for the lagged dependent variable (in the scen options),
which in this case is the sample mean. We first use estsimp to simulate 1000 draws of each coefficient. We
then use dynsim to produce 20 dynamic simulations (n(20)) of each of the three scenarios, with the resulting
predicted values and 95% confidence intervals (the default, changeable via the sig option) saved to a data
set named “dynsim1” in the working directory.

.estsimp reg invest lag_invest mvalue kstock

.dynsim, ldv(lag_invest) scen1(lag_invest mean mvalue p5 kstock p5) scen2(mean)

scen3(lag_invest mean mvalue p95 kstock p95) n(20) saving(dynsim1)

Table 1 shows the dynamics of the first scenario. The predicted value at time t becomes the value of
lag_invest for time t+ 1 and so on. The starting values and the values for each iteration of the scenarios
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are returned in the r(t0_s1) and r(xc_s1) matrices, respectively. To view these values, list the returned
matrices:

.matrix list r(t0_s1)

.matrix list r(xc_s1)

Table 1: Illustration of the Dynamics for the First Two Forecasts of the 5th Percentile Scenario Shown in
Figure 1

Time Scenario Predicted Gross Investment

t

Gross Investmentt−1: 139.2*
Firm Value: p5 106.1
Capital Stock: p5

t+ 1

Gross Investmentt: 106.1
Firm Value: p5 77.2
Capital Stock: p5

t+ 2

Gross Investmentt+1: 77.2
Firm Value: p5 51.9
Capital Stock: p5

*Note: the starting value for gross investment is the sample mean.

We can present the predicted values (and confidence intervals) in the new dynsim1 data set in a variety
of ways. We have found that Stata’s twoway rcap is a simple way of demonstrating the predicted values and
uncertainty, though it is certainly reasonable to display them in a table. We present graphical depictions of
the dynamic simulations in Figure 1.
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Figure 1: An Example of a Dynamic Simulation of Three Scenarios
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Dynamic simulations produce particularly helpful figures because of the variety of inferences we can
make from them. First, we can use these simulations to make inferences about the long-term effects of
variables. One can determine whether the changes in predicted probabilities are statistically different across
time and/or scenarios. For example, since the 95% confidence intervals for the 95th Percentile scenario do
not overlap at t + 2 compared to to those at t = 0, we can infer that after two years, the 95th Percentile
scenario will have a statistically higher gross investment than it did at time t = 0. We can make these types
of inferences across scenarios as well. While there is no statistical difference between the the 5th Percentile
and Mean scenarios at t+1, in the second period the confidence intervals do not overlap. This would suggest
that the long-term effect of these variables on gross investment is quite strong.

We can incorporate forecasting error with analytically-derived standard errors with the forecast option.
We allow the user to specify one of four options for calculating uncertainty for the forecast: ag, ae, sg, or
se. The options are based on whether the user wants to calculate the confidence intervals analytically (a) or
through simulation methods (s), and whether the user wants to use the Greene (2003) (g) or Enders (2004)
(e) formula for the conditional variance of a forecast.

Consider the simple model yt = α0 + α1yt−1 + ϵt, where α1 is the parameter for the lagged dependent
variable. We calculate the error variance with the following formula, σ2 = RSS

N−2 , where RSS is the residual
sum of squares and N is the number of observations. Enders (2004) shows that we can easily generate the
conditional variance of a forecast of j periods with the following formula: Var[et(j)] = σ2[1+α2

1 +α4
1 +α6

1 +

· · ·+α
2(j−1)
1 ]. The forecast error variance at j = 1 is σ2, the forecast error variance at j = 2 is σ2(1+α2

1), and
so on. Greene (2004) provides a slightly different formula: V ar[et(j)] = σ2[1 +

∑
F σ2α2

1].
2 It is important

to note that in both formulas, while the size of the confidence intervals increases at each additional forecast
period, the size of the confidence intervals will be the same across scenarios for the same iteration.

Another benefit of estsimp is that the n draws for the values of α1 and σ2 are easily accessible. One
can then take the mean value of the n draws for both α1 and σ2 to calculate the analytical standard errors,
and then use the desired level of statistical significance (sig) to produce analytical confidence intervals. Or,
one can take advantage of the information present in the n draws to calculate n estimates of the conditional
variance of the forecast, and then use the percentile method to calculate simulation-based forecast errors.

Assuming that the user has already estsimp the data, one can produce the dynamic simulations shown
in Figure 2 with the following code.3 We simplify the code so that there is only one scenario with all values
held at their mean. To demonstrate that the analytically-derived and simulation-based confidence intervals
are similar, we choose the se option (simulation-based standard errors a la Enders) in the first dynsim and
the ae option (analytically-derived standard errors a la Enders) in the second.

.dynsim, ldv(lag_invest) scen1(mean) n(20) sig(90) saving(dynsim_se) fore(se)

.dynsim, ldv(lag_invest) scen1(mean) n(20) sig(90) saving(dynsim_ae) fore(ae)

Using the forecast option widens the confidence intervals to represent the increased uncertainty regard-
ing future forecasts. It is our experience, however, that the different options give similar substantive answers,
so the choice is one of personal preference.

Figure 3 illustrates how an exogenous shock—in this case the firm’s market value (mvalue)—influences
a firm’s real gross investment over two scenarios for 15 iterations. To produce the dynamic simulations, we
first create a data set (grunfeldshock) containing a series of values to use as the exogenous shock (mvalue),
and second, use dynsim to simulate those values:

.preserve

. keep if company == 1

. keep mvalue

. save grunfeldshock, replace

.restore

2This is the case when the lagged dependent variable is limited to a one-year lag.
3We slightly jitter the confidence intervals so that it is easier to compare their sizes.
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Figure 2: An Example of a Dynamic Simulation with Confidence Intervals Based on Analytical and
Simulation-Based Forecasting Errors

.dynsim, ldv(lag_invest) scen1(lag_invest mean mvalue 1000 kstock p5)

scen2(lag_invest mean mvalue 1000 kstock p95) n(15) saving(dynsim3)

shock(mvalue) shock_data(grunfeldshock.dta)

Note that we now include two additional options: the shock option provides the name of the exogenous
variable and the shock_data gives the name of the data set containing the location of the values of the
exogenous variable. In this case, we use the values of mvalue for the first company in the data set. The
value of mvalue for the initial calculation (t = 0) is provided in the scen options (in this case, mvalue=100).
One can also specify the values of the shock variable with a Stata numlist (i.e., 0(10)100).

The breadth of our inferences is increased by the inclusion of a shock variable. In this example, we can
examine whether the 5th Percentile scenario responds to changes in the shock variable (mvalue) differently
than the 95th Percentile. One can also use this figure to determine how long it takes for the predicted values
for each scenario to return to their pre-shock values.

Interactive relationships between the shock variable and the other independent variables can also be in-
corporated into the command with the use of the inter() option. Up to four modifying variables (modify())
and interactive variables (inter()) can be specified, though these variables must be in the same order as
they appear in the estsimp command. In the next example, we interact the shock variable (mvalue) with
another exogenous variable from the model (kstock).

.gen z = mvalue * kstock

.estsimp reg invest lag_invest mvalue kstock z

.dynsim, ldv(lag_invest) scen1(lag_invest mean mvalue 1000 kstock p5)

scen2(lag_invest mean mvalue 1000 kstock p95) n(15) saving(dynsim3)

shock(mvalue) shock_data(grunfeldshock.dta) modify(kstock) inter(z)
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Figure 3: An Example of a Dynamic Simulation with the Inclusion of a Shock Variable
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Figure 4: An Example of a Dynamic Simulation Where a Shock Variable Is Interacted with an Exogenous
Variable
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This is a nice way to illustrate that the effects of an independent variable on the dependent variable
depend on the values of the shock variable. In this case, the difference between the 5th Percentile and 95th
Percentile scenarios becomes more pronounced when there are high values of the shock variable (for instance,
at t+3). It is also interesting to note that while the predicted value for the 5th Percentile does not vary much
over the span of 15 iterations regardless of the value of the exogenous shock, the 95th Percentile scenario is
much more variable.
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